
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of  
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- 
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National 
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory 
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the  
viewpoint of a publication or guarantee its technical correctness. 

FORM 836 (10/96) 
 

LA-UR-01-6876 
Approved for public release;  
distribution is unlimited. 

Title: 
DEVELOPMENT OF A THERMAL EQUILIBRIUM 
PREDICTION ALGORITHM 
 
 
 
 
 
 
 
 
 

Author(s): Cuauhtemoc Aviles-Ramos 
 
 

Submitted to:  
 
 
 
http://lib-www.lanl.gov/la-pubs/00796644.pdf 

 



1 Copyright © 2002 by ASME

Proceedings of ICONE10
Tenth International Conference on Nuclear Engineering

April 14-18, 2002, Arlington Virginia

ICONE10-22542

DEVELOPMENT OF A THERMAL EQUILIBRIUM PREDICTION ALGORITHM

Cuauhtemoc Aviles-Ramos
Safeguards Science and

Technology, NIS-5
Los Alamos National Laboratory

ABSTRACT
A thermal equilibrium prediction algorithm is developed

and tested using a heat conduction model and data sets from
calorimetric measurements. The physical model used in this
study is the exact solution of a system of two partial differential
equations that govern the heat conduction in the calorimeter. A
multi-parameter estimation technique is developed and
implemented to estimate the effective volumetric heat
generation and thermal diffusivity in the calorimeter
measurement chamber, and the effective thermal diffusivity of
the heat flux sensor. These effective properties and the exact
solution are used to predict the heat flux sensor voltage readings
at thermal equilibrium. Thermal equilibrium predictions are
carried out considering only 20% of the total measurement time
required for thermal equilibrium. A comparison of the predicted
and experimental thermal equilibrium voltages shows that the
average percentage error from 330 data sets is only 0.1% . The
data sets used in this study come from calorimeters of different
sizes that use different kinds of heat flux sensors. Furthermore,
different nuclear material matrices were assayed in the process
of generating these data sets. This study shows that the
integration of this algorithm into the calorimeter data
acquisition software will result in an 80% reduction of
measurement time. This reduction results in a significant
cutback in operational costs for the calorimetric assay of
nuclear materials.

INTRODUCTION
A simple physical model for a calorimeter was developed by

C. Aviles-Ramos [1]. A parameter estimation problem is solved
using this model and the voltage signal from the calorimeter
heat flux sensor. This model assumes that the calorimeter is
divided into two cylindrical regions and that heat is transferred
by conduction. However, the estimated thermophysical
properties also contain the effects of convection and radiation
heat transfer that could be present in the calorimeter. A hybrid
algorithm developed by C. Aviles-Ramos [2] is used to solve a

parameter estimation problem that involves the calculation of
the effective thermophysical properties of the two cylindrical
regions. The hybrid algorithm takes advantage of the linearity
of the heat conduction model. This algorithm separates the
linear and nonlinear dependence of the heat conduction model
on the parameters to be estimated. It consists of a linear
parameter estimation solver and a nonlinear minimization
algorithm. These algorithms are put into communication
through a FORTRAN function subprogram. This programming
structure allows different nonlinear minimization algorithms to
be tested while keeping the same linear parameter estimation
solver.

NOMENCLATURE
a         inner radius of power sensor, cm

b         outer radius of power sensor, cm
cp1       heat capacity of region 1, J/(kg K)

cp2      heat capacity of region 2, J/(kg K)

d        height of power sensor, cm
e         percentage error defined by Eq. (43)

0mC    coefficients, Eqs. (16) or (18)

0mD    coefficients, Eq. (17) or (19)

1C       symbol that represents 0g

2C       symbol that represents 3α

3C       symbol that represents 4α
F mn1,   eigenfunction in region 1

F mn2,   eigenfunction in region 2
∗
mnF ,1   eigenfunction in region 1 for 21 zαα <

∗
mnF ,2   eigenfunction in region 2 for 21 zαα <
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 0g      volumetric heat generation, 3W/cm

0J       Bessel function of the first kind and order zero

2rk      thermal conductivity in region 2 along r–direction,
            W/(cm K)

2zk      thermal conductivity in region 2 along z–direction,
            W/(cm K)

1k        thermal conductivity in region 1, W/(cm K)

0mN    norm, Eq. (21)
∗

0mN    modified norm, Eq. (23)
∗
mnN    norm calculated using ∗

mnF ,1  and ∗
mnF ,2

P        predicted thermal equilibrium, Watts or Volts

1zq      heat flux at 0=z  in 0<r<a, 2W/cm

2zq      heat flux at dz =  in 0<r<a, 2W/cm
t          time, s

ft        final prediction time, s

2T        temperature in power sensor, C�

sT        prescribed surface temperature, C�

iT ,0      initial temperature in regions 1 or 2, C�

r         coordinate, cm
0Y        Bessel function of the second kind and order zero

z         coordinate, cm
Greek

2zα     thermal diffusivity in region 2, in z-direction, /scm 2

2rα     thermal diffusivity in region 2, in r-direction, /scm 2

1α       thermal diffusivity in region 1, /scm 2

3α      )( 1,011 sp TTc −ρ , 3J/cm

4α      )( 2,022 sp TTc −ρ , 3J/cm

γ mn    eigenvalue for the r–direction in region 2, 1cm−

∗
mnγ     eigenvalue for the r–direction in region 2  for 21 zαα < ,

           1cm−

mnη     eigenvalue for the r–direction in region 1, 1cm−

∗
mnη     eigenvalue for the r–direction in region 1 for 21 zαα < ,

           1cm−

λ mn    eigenvalue for time, 2/1−s
∗
mnλ    eigenvalue for time, 2/1−s

Θ       heat flux sensor signal, Volts or Watts
)(nξ  integer function

1Ψ      function defined by Eq. (26)

2Ψ     function defined by Eq. (27)

3Ψ      function defined by Eq. (28)

HEAT CONDUCTION MODEL
  The geometry used to develop the calorimeter model is

shown in Fig. 1. The heat conduction equation in the isotropic
inner cylinder shown in Fig. 1 is
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Also, the diffusion equation in the orthotropic outer layer has
the form

                        2
2

2

2
2

2
1

z
Tk

r
Tr

rr
k zr ∂

∂
+�

�

�
�
�

�

∂
∂

∂
∂

                 
t

Tctzrg p ∂
∂

=+ 2
222 ),,( ρ  in bra <<          (2)

where ),,(1 tzrg  and ),,(2 tzrg  are volumetric heat source

functions. The volumetric heat generation function ),,(2 tzrg
could include the heat flux at the surface br = . Subscripts 1
and 2 indicate the inner and outer cylinders respectively.
Equations (1) and (2) are subjected to the following boundary
and initial conditions
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The solution of the system represented by Eqs. (1) and (2) was
found in reference [1] and it is used as the physical model for
this thermal equilibrium prediction research. Since the voltage
signal of the calorimeter power sensor is proportional to the
heat flux at the inner or outer surface of the outer cylinder (see
Fig. 1), the temperature solution, 2T , found in reference [1] is
differentiated with respect to r  to obtain the heat flux at the
surface as
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The definitions of all the parameters appearing in Eq. (9) are
given in [1]. The last two terms of Eq. (9) contain 1zq  and 2zq
which represent the heat losses through the top and bottom
surfaces of the inner enclosure of the calorimeter. If we had a
heat flux sensor that produced at least two voltage signals that
depend in the z-direction, it would be possible to keep the last
two terms of Eq. (9). For example, we could have a heat flux
sensor manufactured in such a way that a voltage signal would
correspond to the region 2/0 dz <<  and another voltage
signal that would correspond to the region dzd <<2/ . This
would make the estimation of the parameters 1zq  and 2zq
possible. Since the heat flux sensors we have available produce
only  one  voltage signal independent of the z–direction, the last

  z

  a

  r

  b

  d

Figure 1. Two-domain  calorimeter  cylindrical  geometry. The
region defined by { dzar ≤≤≤≤ 0  0   and } represents the
measurement chamber and the region located in { bra ≤≤
and dz ≤≤0 } represents the heat flux sensor.

two terms of Eq. (9) are neglected for the purposes of this study.
Neglecting the last two terms of Eq. (9), the form of the model
for the thermal equilibrium prediction is given by
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The heat flux given by Eq. (10) depends on 11 pcρ , 22 pcρ ,

1k , 2rk , 2zk  1,0T , 2,0T , sT , and 0g . This represents a total
of 9 parameters. Since the objective is to predict thermal
equilibrium and not to estimate actual thermophysical
properties, Eq. (10) is modified to reduce the number of
constants. A reduction of the number of parameters is possible
because of the following identity
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The eigenfunctions contained in the model equation (10) are
defined as
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Using the definitions of 0mη  and 0mγ , Eqs. (14) and (15) can
be written as
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The substitution of identity (11) into Eqs. (16) and (17) makes

0mC  and 0mD  functions of 1α , 2rα , and )/( 2211 pp cc ρρ
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From Eqs. (10) and (11), and the definitions of 0mη  and 0mγ ,
the eigenfunctions given by Eqs. (12) and (13) also become
functions of  1α , 2rα , and )/( 2211 pp cc ρρ . As a

consequence of the definitions of 0mC  and 0mD  given by Eqs.
(18) and (19), the transcendental equation (34) given in [1]
becomes
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It can be seen from transcendental equation (20) that the
eigenvalues 0mλ  also depend on 1α , 2rα , and

)/( 2211 pp cc ρρ . For 0=n , the norm defined by Eq. (40) of
reference [1] can be written as
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Because the definitions given by Eqs. (18) and (19) make 0,1 mF
and 0,2 mF  dependent on 1α , 2rα , and )/( 2211 pp cc ρρ , the

factorization of 22 pcρ  in Eq. (21) produces a norm that is

dependent on 1α , 2rα , )/( 2211 pp cc ρρ , and  22 pcρ
                                         ∗= 0220 mpm NcN ρ                       (22)
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The substitution of Eqs. (12), (13), (18), (19), and (22) into Eq.
(9) makes it possible to experess the heat flux at the surface of
the sensor as a function of 6 parameters
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Thus, the heat flux at the surface of the sensor becomes a
function of the form
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where )( 1,0113 sp TTc −= ρα  and )( 2,0224 sp TTc −= ρα .

The values of 11 pcρ , 22 pcρ , 1,0T , 2,0T , and sT don’t need to
be determined individually because the objective here is to
predict the onset of thermal equilibrium. These parameters are
lumped into the ratio )/( 2211 pp cc ρρ  and the constants 3α
and 4α . Note from Eqs. (12), (13), (18), (19), (20), and (24)
that the heat flux at the surface of the sensor depends linearly on
the parameters 3α , 4α , and 0g . Furthermore, function (25)

depends nonlinearly on the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . This type of dependence permits to use a

linear parameter estimation solver to obtain the parameters 3α ,

4α , and 0g . A nonlinear minimization algorithm can be used

to obtain the constants 1α , 2rα , and )/( 2211 pp cc ρρ .

NUMERICAL IMPLEMENTATION
 Equation (24) was implemented in FORTRAN. An

algorithm developed in [1] was used to determine the
eigenvalues from the transcendental equation (20). Initially, a
FORTRAN program was written to implement Eq. (9). Later
on, this computer program was modified to implement Eq. (24).
Extensive numerical testing was carried out to make sure that
the results from both programs agree to sixteen decimal places.

THERMAL EQUILIBRIUM PREDICTION ALGORITHM
Thermal equilibrium predictions are carried out using a

parameter estimation hybrid algorithm [2] and the numerical
implementation of Eq. (24). For the sake of describing the key
aspects of this hybrid algorithm, Eq. (24) is written in a more
convenient form as
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Let Θ represent the heat flux sensor signals at discrete intervals
of time, the functional to be minimized is defined as
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where { }Mttt ,...,, 21  are the times at which the voltage
measurements are taken and M is the number of measurements
considered in the minimization. The method selected to
minimize Eq. (30) is a technique without derivatives modified
by Powell (in Brent [4]). Powell’s method is used to minimize
Eq. (30) with respect to the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . For each set of parameters selected by
Powell’s algorithm [3, 4], a least-squares procedure is applied
to solve the linear system
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The estimation procedure begins by providing initial guesses
for the parameters 1α , 2rα , and )/( 2211 pp cc ρρ . Then the
solution of the linear system described by Eq. (31), yields the
coefficients },,{ 321 CCC . Once the coefficients jC  are
known, the value of the functional S is calculated and returned
to Powell’s algorithm. At this stage, Powell’s algorithm
provides a second estimation for the parameters 1α , 2rα , and

)/( 2211 pp cc ρρ . This process is repeated until a predefined

convergence criterion for the functional S  is satisfied. Figure 7
shows a simplified flowchart of the hybrid algorithm.

The major goal in this study is to reduce the assay time in
calorimeter measurements. Once the parameter estimation
problem described above is solved, the estimated parameters
are substituted back into Eq. (24) and a thermal equilibrium
prediction is obtained by taking the limit of Eq. (24) as

∞→t . Note that only the first summation term in Eq. (24)
survives in the limit as ∞→t . This is to be expected since
this term contains the volumetric heat generation constant

0g which is a measure of the heat produced by the radioactive
decay of the material being assayed in the calorimeter. The

value of 0g  obtained from the parameter estimation problem
described above and the steady-state closed form solution can
also be used to predict thermal equilibrium. Equation (10) is a
one-dimensional solution of the heat conduction equations in
the calorimeter. These equations have the form
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As time tends to infinity, tT ∂∂ /1  and tT ∂∂ /2  in Eqs. (32)
and (33) tend to zero to produce
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Equations (34) and (35) are the steady-state versions of Eqs.
(32) and (33). They can be solved using the continuity of
temperature and heat flux at the interface between the sensor
and the inner enclosure of the calorimeter. These conditions can
be stated as
                                     )()( 21 aTaT =                                 (36)

                          
dr
dTk

dr
dTk r

2
2

1
1 =   at ar =                     (37)

The boundary condition at br =  used to obtain Eq. (10) is
also used to solve Eqs. (34), (35), (36), and (37). This condition
reads
                                        sTbT =)(2                                    (38)

where sT  is the temperature of the outer surface of the tube that
surrounds the sensor. The solutions of Eqs. (34) and (35) are

                                 
1

2
0

1 4
)(

k
rgArT −=                              (39)

                                 rDCrT ln)(2 +=                             (40)
The constants ,, CA and D  can be obtained applying
conditions (36)–(38). After calculating these constants, Eq. (40)
takes the form
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b
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k
agTrT
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s ln
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2

2
0

2                       (41)
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After calculating 0g  using the thermal equilibrium prediction
algorithm, Eq. (42) can also be used to obtain the steady-state
heat flux.

STRUCTURE OF THE THERMAL EQUILIBRIUM
PREDICTION ALGORITHM AND NUMERICAL
PROCESSING OF THE HEAT FLUX SENSOR SIGNAL

The objective of thermal equilibrium prediction is to reduce
the total assay time by a significant amount and still keep the
prediction percentage error at an acceptable level. The data sets
that contain the thermal response of the heat flux sensor are
modified first to define the initial time and voltage, and the
thermal equilibrium prediction region. A fraction of the total
assay time is defined first prior to the definition of this region.
Once the fraction of the total assay time is calculated, the
definition of the thermal equilibrium region is made based on
the shape of the heat flux sensor signal at the earliest stages of
the measurement. If the sensor signal contains the effects of the
opening and closing of the calorimeter, see Figs. 2 and 4, this
part of the signal is discarded. Otherwise, the definition of the
thermal equilibrium prediction region is done as shown in Figs.
1 and 3. Figures 2–4 show the time, it , and voltage, iV , used to
transform the time and voltage scales so that the thermal
equilibrium region starts at time equal to zero and at voltage
equal to zero.  

The calorimeter heat flux sensor voltage readings are taken
with a digital multi-meter and they contain some degree of
noise. The voltage readings are taken at time intervals, at∆ ,
defined by the operator of the data acquisition software. The
data acquisition sampling interval, at∆ , is not the optimum

discretization interval, 1−− pp tt , that should be used to define
the number of measurements used for the minimization of Eq.
(30). For this reason, numerical experiments were carried out
using 18 data sets to estimate the optimum size of the
discretization  interval that should be used in Eq. (30). It was
found empirically that two numerical interpolations applied in
series provided reasonable results. Initially, a prediction region
that represents a fraction of the total assay time is defined. Next,
two numerical interpolations are applied to this prediction
region. First, the experimental data is interpolated linearly using
a time step, t∆ , equal to 16 seconds. Second, a cubic or linear
interpolation that uses Lagrange’s classical formula and
Neville’s algorithm [3] is applied to divide the prediction region
into 5 to 3 data points. These data points represent the number
of measurements, M , considered in the minimization of Eq.
(30). Figure 5 shows a sketch of the numerical processing of the
experimental data contained in the thermal equilibrium

prediction region. The data points generated in the prediction
region are fed to Powell’s algorithm and the hybrid algorithm
starts as explained in the paragraph subsequent to the statement
of Eq. (30). A flow chart of the hybrid algorithm is shown in
Fig. 7.

6.298524e10 6.298525e10 6.298525e10 6.298526e10 6.298526e10 6.298527e10

-0.049

-0.048

-0.047

-0.046

-0.045

H
ea

t F
lu

x 
Se

ns
or

 R
ea

di
ng

s,
 V

ol
ts

Thermal Equilibrium Prediction Region

Time, seconds

it

iV

    Figure 2. Typical heat flux sensor calorimeter response that
    includes  the  effects of opening and closing the calorimeter
    cover  to  insert the sample. The location of the minimum at
   ),( ii Vt  is also depicted.
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     depicting the  thermal equilibrium prediction region.
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     Figure 5.  Typical  heat  flux  sensor  calorimeter response
     depicting the  thermal equilibrium prediction region.

THERMAL EQUILIBRIUM PREDICTION RESULTS
Thermal equilibrium predictions were carried out using 330

data sets from different calorimeters. One hundred and sixty
four predictions using 164 data sets from the highly enriched

uranium (HEU) calorimeter have an average percentage error of
0.085%. This average is calculated using an error defined as

                                  100×−=
E

PEe .                            (43)

The thermal equilibrium prediction
region shown in Figures 2–5  is

discretized using linear interpolation
and a time step of 16 seconds.

The discretized thermal equilibrium
region is divided into 5, 4, or 3 data

points using linear or cubic Lagrange’s
interpolation .

Five, four, or three data points
belonging to the thermal equilibrium

prediction region are fed to the hybrid
algorithm

             Figure 6.  Numerical  processing applied  to the
             data  set represented by the thermal equilibrium
             prediction region.
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prediction   using Eq. (24).
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  Figure 8.  Typical  calorimeter  voltage readings showing the
  experimental and prediction thermal equilibrium regions.

     Table 1.  Thermal  equilibrium  predictions  average  error
     calculated  using  the  error  defined  by Eq. (43) and data
     sets for each calorimeter.

Calorimeter
 Average
  Error

Time
Ratio

Volts

Mean

       
),( PE −

HEU 0.085% 0.208 2.723E-6 ± 1.70E-5
RFETS 0.145% 0.202 9.109E-6 ± 1.63E-5
SS 0.179% 0.205 4.507E-7 ± 1.46E-6

The symbol E appearing in Eq. (43) is the experimental thermal
equilibrium obtained taking the arithmetic average of the
voltage data in the experimental thermal equilibrium region,
and P is the predicted thermal equilibrium obtained using the
model Eq. (24). A typical experimental thermal equilibrium
region is depicted in Fig. 8. One hundred and seventeen thermal
equilibrium predictions using 117 data sets from the Rocky
Flats Environmental Technology site (RFETS) have an average
percentage error of 0.145%. Results for the solid state
calorimeter (SS) show that 69 thermal equilibrium predictions
have an average error of 0.179%. Table 1 summarizes these
results. Furthermore, the second column of Table 1 shows the
average percentage error calculated using the error defined by
Eq. (43), the third column shows the ratio of the time used to
carry out the prediction to the total assay time, the fourth
column shows the average of the difference, PE − , in Volts.
The fourth column in Table 1 can be converted into Watts
dividing by the sensitivity of each calorimeter given in
Volt/Watt.  For the HEU calorimeter, this average produces:

=− )Mean( EP 9.55E-5 ± 5.95E-4 Watts. The RFETS row
yields: =− )Mean( EP 6.66E-4 ± 1.19E-3 Watts. For the SS

calorimeter: =− )Mean( EP 4.29E-5 ± 1.39E-4 Watts. Table 1
shows that the average percentage error for the 330 equilibrium
predictions made in this study is only 0.136%.

REMARKS AND CONCLUSIONS
A thermal equilibrium prediction algorithm is developed

using an exact heat conduction model. The results shown in
Table 1 show that this model can reduce the total assay time
significantly and still maintain a reasonable error level.
Furthermore, this thermal equilibrium prediction algorithm can
reduce the assay time in large volume calorimeters. Large
volume calorimeters have longer assay times.

The percentage of the total assay time used in this study,
20%, can be reduced further by developing a criterion to
estimate the optimal final prediction time. This criterion may
reduce the percentage of the total assay time somewhere
between 10% and 20%. One approach that can be used to
develop this criterion is to look at the behavior of the first and
second derivatives of the calorimeter response at the early
stages of the measurement. Furthermore, this criterion can be
used to develop a real time algorithm that will decide when to
stop acquiring data and carry out the thermal equilibrium
prediction.

Typical calorimeter calibration curves are constructed using
the arithmetic average of the voltages at thermal equilibrium,
see Fig. 8. A calibration curve can also be constructed using the
model Eq. (24) by carrying out thermal equilibrium predictions
considering the total assay time. A calibration curve constructed
with the model Eq. (24) would provide more consistency when
predictions using a fraction of the total assay time are carried
out utilizing Eq. (24).

ACKNOWLEDGMENTS
The author wishes to acknowledge the support of the U. S.

Department of Energy, Office of Safeguards and Security. Also,
the author would like to acknowledge the valuable comments
and encouragement of Cliff Rudy.

REFERENCES
[1]  Aviles-Ramos, C., “Exact Solution of Heat Conduction in a
Two-Domain Composite Cylinder with an Orthotropic Outer
Layer”, Proceedings of the 35th National Heat Transfer
Conference, Anaheim, California, 2001.
[2] Aviles-Ramos, C., “Estimation of Thermophysical
Properties of an Orthotropic Region of a Two-Layer Body
Using the Exact Solution,” Ph.D. Dissertation, University of
Texas at Arlington, Arlington, Texas, 2000.
[3] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and
Flannery, B. P., Numerical Recipes in FORTRAN: The Art of
Scientific Computing, Cambridge University Press, London,
UK, 1992.
[4] Brent, R. P., Alogrithms for Minimization Without
Derivatives, Prentice Hall, Inc. Englewood Cliffs, New Jersey,
1973.


	DEVELOPMENT OF A THERMAL EQUILIBRIUM PREDICTION ALGORITHM
	ABSTRACT
	INTRODUCTION
	HEAT CONDUCTION MODEL
	NUMERICAL IMPLEMENTATION
	THERMAL EQUILIBRIUM PREDICTION ALGORITHM
	STRUCTURE OF THE THERMAL EQUILIBRIUM PREDICTION ALGORITHM AND NUMERICAL PROCESSING OF THE HEAT FLUX SENSOR SIGNAL
	THERMAL EQUILIBRIUM PREDICTION RESULTS
	REMARKS AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

		2002-03-07T08:58:58-0700
	Viola Vigil




